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Abstract. Fitness landscapes have proven to be a valuable concept in evolutionary biology, com-
binatorial optimization, and the physics of disordered systems. A fitness landscape is a
mapping from a configuration space into the real numbers. The configuration space is
equipped with some notion of adjacency, nearness, distance, or accessibility. Landscape
theory has emerged as an attempt to devise suitable mathematical structures for describ-
ing the “static” properties of landscapes as well as their influence on the dynamics of
adaptation. In this review we focus on the connections of landscape theory with algebraic
combinatorics and random graph theory, where exact results are available.
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I. Introduction. The concept of a fitness landscape originated in the 1930s in
theoretical biology [251, 252] as a means of visualizing evolutionary adaptation. A
fitness landscape is a kind of “potential function” on which a population moves uphill
due to the combined effects of mutation and selection; see Figure 1.1. Implicit in
this notion is both a fitness function f that assigns a fitness value to every possible
genotype (or organism) and the arrangement of the set of genotypes in some kind of
abstract space that provides some notion of accessibility or reachability.

A significant part of modern population genetics is still based on these ideas.
The basic ingredients are [26] a set X of “types” (which can be either quantitative
phenotypic traits (such as weight or length of limb) or a discrete genetic structure), a
fitness function f evaluating the types, and a mutation function u(x,y) measuring the
probability that type y is obtained from type x through a mutation event. (Strictly
speaking, this implies that a measure must be defined on the set of types. Since we
will mostly be concerned with the case of a finite set X with the uniform measure
we shall not be concerned with this complication.) A very general framework for
multilocus models is described in [101].
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Fig. 1.1 A fitness landscape. The fitness of this particular snail species depends on its shape. Mu-

tations continuously produce variants that are selected if their fitness is larger than the
fitness of the current “wild-type” snail. As a consequence, the shape of the snails changes
over time until it reaches a maximum of the fitness landscape.

Models of disordered systems, in particular spin glasses, naturally led to the notion
of landscapes [21, 152]: Each spin configuration is assigned an energy by virtue of the
Hamiltonian that specifies the model. In the simplest case so-called Ising spins are
considered, which can take only two values: up (¢ = +1) and down (0 = —1). The
Hamiltonian of the system typically considers the interactions between neighboring
spins, in the simplest case

(1.1) floy=" > oo

neighbors i,;

Spin configurations may change over time by flipping single spins. Of course flips that
decrease the total energy f(o) of the system are more likely than others. We shall
briefly return to this topic in section 6.

There is close conceptual similarity of the landscapes in biology and spin glass
physics with the potential energy surfaces (PESs) of theoretical chemistry [104, 153]:
As a consequence of the validity of the Born—-Oppenheimer approximation, the PES
provides the potential energy U (ﬁ) of a molecule with n atoms as a function of its
nuclear geometry R € R3". Figure 1.2 show the PES of dimethoxymethane as a
function of two torsion angles.

In complete analogy to this simple example, the folding of biopolymers, including
proteins and nucleic acids, is determined by energy landscapes over a very large num-
ber of torsion angles. This problem was recently reviewed from a mathematical point
of view in [164]. Similarly, PESs of molecular clusters can be studied [18, 48, 239]. A
very recent review of the smooth energy landscapes in molecular systems is [238].

In the case of biopolymers, however, it is often useful to approximate the smooth
PES by a discretized model that conceptually considers only the local minima of
the PES. In the case of proteins, lattice models are prevalent [35, 47, 170] which
view peptide chains as self-avoiding walks on a (usually square or cubic) lattice. The
discrete standard model of RNA energy landscapes [64, 66] is briefly described later
in this contribution; see section 5.2. The differences between discrete and continuous
landscape models are discussed briefly in section 7.1; see also [207].

In combinatorial optimization the fitness function f is usually referred to as the
cost function on a search space X [82]. The traveling salesman problem (TSP) is
probably the most frequently studied combinatorial optimization problem. Hundreds
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Fig. 1.2 Potential energy surface of dimethozymethane CH3 — O — CHy — O — CH3 as a function of
the two torsion angles ¢ and ¥. The global minimum of the energy surface corresponds
to preferred geometry of the molecules. Two extreme geometries, with ¢ = 1 = 0 and
¢ =1 = 180°, are shown. Data provided by Alfred Karpfen.

of publications and books have been devoted to this problem, and a large variety of
solution techniques has been proposed [139]. The TSP is deceptively easy to state:
A salesman wants to visit n distinct cities and then return home. The goal is to
minimize the overall traveling distance while visiting each city not more than once.
The problem is well known to belong to the class of NP-hard problems [7, 82].

The ingredients of the TSP (see Figure 1.3) are simple enough: The configurations
are the n! permutations of the n locations, usually called a “tour.” We write 7 =
(w(1),...,m(n)) for the order in which they are visited. Given the travel distance (or
cost) Cy; from city [ to city k we can write down the cost function in the form

n—1
(1.2) f(m) = Z Cr(i+1),76) T Cr(1),x(n) »
i=1

where the last term describes returning to the point of origin. The TSP’s apparent
simplicity on the one hand and the difficulty of finding optimal solutions on the other
hand have established it as a test bed for new heuristics and exact algorithms. How-
ever, the TSP is not only of theoretical value; there are many industrial applications
of the TSP and its variants.

For the purpose of this contribution we are interested in the properties of the
landscape of the TSP rather than in algorithms for “solving” it. A very pragmatic
reason for this is that one may hope that problems with similar landscapes will lend
themselves to similar solutions.
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Fig. 1.3 The “New Mexico weekend trip” is a toy example of a TSP: starting from Albuquerque
airport, you rent a car in order to wvisit the 9 sites shown on the map. At the end, the
car must be returned to Albuquerque. Of course, you want to minimize the total driving
distance. An optimal solution is shown on the right-hand panel.

Fig. 1.4 Transposition (i,k)m (middle) and reversal [i, k]m (right) of the TSP tour m (left). With
a transposition two cities i and k exchange their place along the tour w; a reversal move
inverts the direction of the part of the tour between i and k as well.

A very simple approach to finding short tours is the following heuristic: Start
with an arbitrary tour mg. Then try to modify the tour, e.g., by exchanging two
cities; such a move is called a transposition; see Figure 1.4. If the new tour 7’ is
shorter, then retain it, otherwise try again. Of course, there is no guarantee that a
heuristic procedure, such as the “adaptive walk” described above, will find the optimal
solution.

Heuristic procedures operating on the landscape of a combinatorial optimization
problem are by no means the only way of attacking such problems. In many cases
efficient algorithms can be found that construct a globally optimal configuration from
smaller parts, e.g., in dynamic programming [19] or other specialized methods [139].
Nevertheless, landscape-based heuristics such as simulated annealing (see section 6.1)
are of substantial practical importance. The performance of these methods, both in
terms of required computer resources and in terms of quality of the best configurations
that are found, can be improved by tuning the move set, i.e., the way in which
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Fig. 1.5 Boiling points of heptane isomers. The configuration space is formed by the 9 isomers of
C7H16; the height of the landscape gives the boiling points of these hydrocarbons.

configurations are modified, and by tuning the criteria for retaining a configuration.
The application of evolutionary models to combinatorial optimization problems has
lead to the design of so-called evolutionary algorithms such as genetic algorithms,
evolutionary strategies, genetic programming, and memetic algorithms [69, 111, 124,
136, 151, 178].

In the case of the TSP it is an interesting and, at first glance, a rather surprising
observation that simple heuristic algorithms (such as simulated annealing) work much
better with “reversals” (inversion of a part of the tour; see Figure 1.4) than with
transpositions as long as the matrix of travel costs is symmetric Cy; = Cjy (see [143]
for an analysis of asymmetric travel cost matrices). If transpositions are used, it does
not matter whether the travel cost matrix is symmetric or not. An explanation for
this phenomenon will be given at the end of section 3.3.

In a chemical application the configuration space typically consists of a collection
of molecules (or molecular graphs, to be precise). The structure X" arises from com-
paring the molecular shapes or by considering how similar the pathways of chemical
synthesis are by which the molecules can be obtained in practice. Another way of
arranging molecules by means of a certain partial order is described in, e.g., [130].
The “fitness” function is a particular chemical or physical property of the molecule,
e.g., the boiling point or the binding constant to a cellular receptor. A very simple
example is shown in Figure 1.5.

An additional complication in chemical applications is that f(x) is not known
for all molecules. In methods such as QSAR (quantitative structure-activity rela-
tionships) [100, 137] so-called descriptors or indices (i.e., numerical parameters) are
derived from a molecular graph or via the detour of computing the detailed three-
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Table I.1 Comparison of landscapes in different contexts.
Physics, Biology Optimization Chemistry
X | genes, genomes “configurations” | molecules
molecular conformations e.g., TSP tours,
spin configurations strings
X | mutation “move set” similarities in
bond rotations synthesis or structure
spin flips
given by nature designed designed
f fitness cost physical or chemical
energy properties
known known incompletely known
? population structure global optimum approximation of f
thermodynamic properties then global optimum
speed of adaptation
aging ...

dimensional spatial and electronic structure of the molecule. A famous example is
the Wiener index of a graph (which is defined as the sum of all graph-theoretical
distances between all atom pairs in the molecule) [97]. The vector of these indices is
then related to a particular physical, chemical, or biological property of interest by
means of a multivariant statistical data analysis. In other words, the first step in a
QSAR application is to find an approximation f* of f with a prescribed functional
form that can be used to predict the property for molecules that have not yet been
synthesized or investigated. In the second step the configurations (= molecules) with
the optimal values of f* are computed. These molecules are then candidates for, e.g.,
new drugs.

Table 1.1 summarizes some aspects of landscapes in various scientific disciplines.
More recently, the language of landscapes has also been transferred to social sciences
[134, 140]. For instance, electoral landscapes are used to describe the expected fraction
of votes for a political party given the position of the voters and competing parties
[134, 206]. Not surprisingly, fitness landscapes have emerged as one of the unifying
themes in the literature on complex systems [38, 78, 124, 174].

Let us now turn to the main purpose of the review, the mathematical theory of
fitness landscapes. In formal terms, a landscape is a triple (X, X, f) consisting of

1. a set X of configurations;

2. a notion X of neighborhood, nearness, distance, or accessibility on X; and

3. a fitness function f: X — R.
The set X together with the “structure” X forms the configuration space. The def-
inition of X is purposefully left vague at this point and will be made precise in the
following section.

Landscapes can be studied either from a “static” point of view, focusing on ge-
ometric properties such as smoothness, ruggedness, and neutrality, or from a “dy-
namical” point of view, focusing on the features of a dynamical system, for instance,
an evolving population, that uses the landscape as its substrate. The static point
of view will be the main topic of this review as it lends itself readily to a detailed
mathematical analysis. Dynamical aspects are much more difficult to analyze and are
mostly tackled by computer simulations.

This contribution is organized as follows: We first identify the structure of config-
uration spaces either as undirected, unweighted graphs or as reversible Markov chains.
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This sets the stage for decomposition of landscapes in terms of particular orthonormal
bases that take into account the structure of the underlying configuration space. This
“spectral” approach concentrates on ruggedness, neutrality, and isotropy and is of
particular relevance for combinatorial optimization problems and disordered systems.
Landscapes arising in biology are based upon an underlying genotype-phenotype map
which determines key features of the landscape. We discuss two paradigmatic exam-
ples of genotype-phenotype maps: RNA secondary structure folding and sequential
dynamical systems. The analysis of these examples naturally leads to a random graph
theory of neutrality. In section 6 we briefly review dynamical aspects in landscape
theory, in particular, simulated annealing and the quasi-species model. We close our
discussion with a few remarks on recent trends.

2. Configuration Spaces. In this section we briefly review the most common
ways of organizing the set of configurations into a configuration space. Since most of
this deals with standard constructions we keep it as brief as possible. There are three
major structures X on X that are used in landscape theory:

1. Sometimes transition probabilities are specified that describe how frequently
a system attempts to move from one configuration to another. This is the
usual situation in a population genetics setting, where a mutation function
u(zx,y) is given.

2. In computer science one typically specifies a “move set” or “genetic operator”
that interconverts one or more configurations into a new one. Evolutionary
biology takes the same point of view, except that the move sets are given by
nature rather than engineered.

3. A rigorous mathematical analysis often starts with specifying a metric or a
topology on X. This approach will be discussed in some detail in section 7.1.

We shall see below that move sets and transition probabilities are closely related.
Eventually, we obtain an algebraic description of the configuration space in terms of
a matrix that may serve as the starting point of spectral landscape theory.

2.1. Markov Chains. Regarding X as a set of “states” we may specify transition
probabilities T, for moving from y to . The Markov process with transition matrix
T organizes the configuration space. Typically, one requires T to be ergodic (i.e.,
every state can be reached from every other state) and reversible, i.e., to satisfy

(E) T is irreducible, or, equivalently,

there is a unique stationary distribution p on X such that Tp = p. Further-
more p(x) > 0 for all x € X.
(R) Tuyp(y) = Tyep(z). This condition is also known as “detailed balance.”
In other words, T is self-adjoined w.r.t. the scalar product

(2.1) (f.9)p =D _pl@)f(z)g(z)*,

where * denotes complex conjugation. The most important examples in landscape
theory are transition matrices associated with mutation and recombination, which
are discussed in the following section in more detail.

A most useful observation is that the matrix S defined by

(2.2) Suy = p(x) "2 Tyyp(y)/?

is symmetric and similar to T; see, e.g., [168]. Hence given a nonsymmetric transition
matrix T and a landscape f we may transform the model to new coordinates with
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the symmetric operator S and the transformed landscape

(2.3) 7 (x) = p(a) "2 f (2).

This allows for the application of much of the spectral landscape theory in the non-
symmetric case as well.

2.2. Move Sets. In its most abstract form a move set assigns to a k-tuple (z1, .. .,
rx) € X*, which we refer to as “parents,” a list N(z1,...,2x) € X, which we call
“children.” In the following we will restrict our attention to the two most commonly
used move set types, which are mutation and recombination.

2.2.1. Mutation. A mutation operator simply assigns a set N(x) of “accessible
neighbors” or “elementary mutants” to each configuration x; see Figure 2.1. This
allows us to interpret X as a (possibly directed) graph with vertex set X and N(z)
the (out)neighbors of z € X. Most commonly the move sets are constructed such that
y € N(x) if and only if © € N(y), i.e., the graph is undirected. A graph is faithfully
represented by its adjacency matrix A, which has the entries A,, = 1if x € N(y) and
A, = 0 otherwise. Obviously, A is symmetric if and only if the graph is undirected.
With each (directed or undirected) graph there is an associated Markov process on
its vertex set [145] defined by the transition matrix

(2.4) T=AD!,

where D is the so-called degree matrix, which is diagonal, and D,, = |N(z)| is the
number of neighbors of z. This Markov process describes a random walk on X which
has been suggested as a means to sample information about a landscape by Weinberger
[242, 243]. We remark that in the case of undirected and symmetric directed graphs
the stationary distribution is given by

D:CQC
2F

(2.5) p(z) =

where F is the total number of undirected edges.

2.2.2. Recombination and Crossover. The most immediate consequence of the
fact that recombination acts on two arguments is that the recombination-induced
configuration space cannot be represented as a simple graph with the set of genotypes
representing the set of vertices. This leaves two alternatives: One can change the
nature of the vertex set and have pairs of types as vertices. Then one obtains again
a (di)graph, since each elementary recombination event creates up to two different
strings. This approach was pioneered by Culberson [39] and Jones [119]. The alter-
native is to represent individual genotypes by vertices and to make the edges more
complex. In Gitchoff and Wagner [86] it was shown that recombination spaces can
be represented as hypergraphs (which consist of a vertex set X and a collection &€
of (not necessarily) distinct subsets of X called (hyper)edges), where the hyperedges
are the sets of all recombinants that can arise from the recombination of two types.
With this approach it was easy to show that string recombination spaces and point
mutation spaces are homomorphic. Hypergraphs are still not completely satisfactory,
since they do not indicate which pair of types produces which set of recombinants,
i.e., which hyperedge arises from which mating. This led us to invent P-structures
P : X x X — 2%, which are mappings of pairs of types to the hyperedges of the
hypergraph [221, 237].
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Fig. 2.1 Some examples of configuration spaces. (a) Phylogenetic trees with five taza related by
so-called mearest neighbor interchanges. (b) The permutohedron graph arises from the
permutations of (1,2,3,4) that differ by transposing two adjacent entries. (c) The same
permutations, but this time all transpositions lead to neighbors. (d) The sequence space
(Hamming graph) of binary sequences of length 4. (e) The sequence space of all binary
sequences with length at most 3. Moves are mutations 0 <> 1 as well as insertions and
deletions of single 1°s and 0’s.
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Fig. 2.2 Recombination mechanisms. Homologous recombination works on aligned sequences of
equal length. The number of crossover points may vary. In the extreme case of uniform
recombination each locus is transmitted independently to the offspring genes. In contrast,
nonhomologous recombination works on imperfectly aligned sequences.

We focus here on homologous recombination on a genome consisting of n loci; see
Figure 2.2. For each locus k, there are o alleles. The set of all the [], oy possible
genotypes will be denoted by X. For each locus k, we label the alleles using a letter
from the alphabet Ay, = {0,...,ar — 1}. Thus X = [], Ax. A particular genotype
(or sequence) x € X can be regarded as a vector with components xp € Ag. A
particular crossover operator is determined by the list x of loci that the child inherits
from the first parent. Thus the loci in ¥ = {1,...,n}\ x come from the second parent.
More formally, given x, the offspring = x(y, z) of the two parents y and z has the
componentwise representation

_ e it kex,
(2.6) xk_{zk. if kex.

It will be convenient in the following to express (2.6) by means of an “incidence
operator”:

2 if z=y=z¢,
(2.7) HX 1 if y#=2 and z = x(y, 2)

@, (y,2) .
0 otherwise .

Here we restrict ourselves to recombination on strings. Crossover operators for per-
mutations, such as traveling salesman tours, are reviewed, for instance, in [138].

A recombination operator in the sense of most of the genetic algorithm (GA)
literature is then a family F of crossover operators that act on X x X with probability
m(x). The incidence “matrix” associated with a recombination operator is simply

(2.8) H” = HX.

x€F

The two most important recombination operators are the following:
[co] Uniform recombination contains all 2" possible crossover operators. In this
case it is natural to include the identity .
[1] 1-point recombination contains all crossover operators x for which the char-
acteristic set is of the form x = {1,...,k}.
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Fig. 2.3 Crossover walk. The “father” (square) is mated with a randomly chosen “mother” (circle).
One of the offsprings is the “son” (next square), which becomes the “father” of the next
mating.

Homologous recombination (of strings) under very general conditions leads to very
regular configuration spaces. In particular, one can show that the automorphism
group of H” is generously transitive [221]. This picture, however, changes radically
if unequal crossover is considered, where the number of genes on a chromosome can
change [203].

A crossover walk [112, 113] (see Figure 2.3) on X is the Markov process based on
the following rule: The “father” y is mated with a randomly chosen “mother” z. The
offspring is “son” z, which becomes the “father” of the next mating. We regard the
sequence of “fathers” as a random walk on X. It is straightforward [219] to derive
the transition matrix of this Markov process for homologous recombination from the
incidence “matrix” H”. One obtains

- 1
(2.9) 7,7 =m0y D Hy .02,
xEF zeX

where p(z) denotes the frequency distribution of the genotypes in the equilibrium
population.

3. Decompositions of Landscapes. Regarding f : X — R as a vector in the | X|-
dimensional Euclidean vector space RIX! immediately poses the question of whether
there are more convenient bases than the standard basis {4, }, with 6, (y) = 1 if y = «,
and 0 otherwise. This is the starting point of what one might call algebraic landscape
theory or spectral landscape theory.

3.1. Fourier Transform of Landscapes. A suitable basis naturally encapsulates
information about the regularities of the configuration space. Hence one of the sym-
metric X x X matrices introduced in the previous section is the most common starting
point.

3.1.1. Discrete Laplace Operators. From the algebraic point of view it appears
to be more natural to start with a discrete Laplace operator

(3.1) ~A=Ds-S  with (Ds)ar = Y _ Say
yeX

since it has a number of desirable mathematical properties:
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(1) —A is symmetric and has nonpositive off-diagonal entries.

(2) —A has 0 as an eigenvalue with eigenvector 1 = (1,...,1). The eigenvalue 0
is unique if and only if the graph associated with the off-diagonal entries is
irreducible.

(3) —A is nonnegative definite.
The graph Laplacian —A = D — A arises naturally as the discretization of the Lapla-
cian differential operator, for instance, in finite element computations. For recent
surveys on graph Laplacians, see [36, 150, 157, 158].

3.1.2. Coherent Algebras. An alternative, or maybe an even more appealing
starting point, is to consider the coherent algebra associated with the configuration
space graph or transition operator [131, 220].

A set of complex matrices that is closed under (i) scalar multiplication with
complex numbers, (ii) componentwise addition, (iii) ordinary matrix multiplication,
(iv) componentwise multiplication, and (v) transposition is called a coherent algebra
or cellular algebra. Equivalently, a matrix algebra 20 C CXIXIXI is coherent if and
only if it satisfies the following axioms:

(i) As a linear space over C, 20 has a basis of {R(!),... R} of 0-1 matrices.

(ii) Y7y RY = J, the all-1 matrix.

(iii) For every i € {1,...,r} there is an i’ such that R(T = R,

(iv) T € 20.

Axiom (ii) above implies that the relations associated with the basis matrices RU)
form a partition of X x X. Such partitions are known as coherent configurations
[106, 107, 108]. These are highly regular structures that combinatorially behave almost
like groups. The main difference is that they do not require an algebraic operation
(multiplication) to be defined on X. Indeed, in the context of fitness landscapes a
group operation on X appears rather contrived: What would we mean, e.g., by the
“multiplication” or “addition” of two genes?

For each collection M = {Mjy,..., My} of | X| x | X| matrices there is a smallest
coherent algebra (M), which is defined as the intersection of all coherent algebras
that contain {My,...,Mj}. Since the centralizer algebra is coherent we have

(3-2) (M) < Ve(Aut[M], X).

Equality holds if and only if there is a permutation group that has {(M)) as its cen-
tralizer algebra [132]. The coherent algebra (M) can therefore be regarded as a
“combinatorial approximation” of the centralizer algebra [56, 131]. This is of par-
ticular importance in the graph case: given the adjacency matrix A of I, there is
a polynomial time algorithm that determines the coherent algebra 23(I') = ((A));
see [9, 10, 245]. It is straightforward to check that the degree matrix D, and hence
also the transition operator T = AD™! and the associated Laplace operators, are
contained in ((A)).

Let R = {RM,... R} be the standard basis of a coherent algebra 20. We
have RWRM) = Yo pzvyR("), where the intersection numbers

(3.3) pZ’V:’{zeX‘(sc,z)e,u and (z,y) ev}| €Ny

are the same for all pairs (x,y) € k. The r x r matrices R” with entries f{ff,)i =i,

generate a matrix algebra 97 that is isomorphic to 20 [106]. This observation makes
coherent algebras appealing objects for our purposes because 9 is small enough in
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many cases to allow for explicit computations of eigenvalues and eigenvectors [220].
This is of particular interest in the case of association schemes (symmetric coherent
algebras), in which case all members of 97 share a common orthonormal basis of
eigenvectors [25]. We remark that, in the case of Hamming graphs, the eigenvectors
are the well-known Walsh functions [62].

3.1.3. Graph-Theoretical Fourier Decomposition. In the following we will let
{¢x|X — C} be an orthonormal basis of eigenfunctions of the desired operator taken
from 20. It is then natural to expand the fitness function f in terms of this basis:

(34) f@) =" arpr(x).
k

We shall use the following convention: (i) The index 0 is reserved for the “ground
state.” If the basis is derived from a Laplacian, for instance, then ¢q is constant, the
associated eigenvalue is zero, and

(3.5) a0 =3 go@)f@) = [x]" Y ().

zeX

(ii) The distinct eigenvalues of —A will be denoted by A, and in the Markov chain case
we write Ap. It will be convenient to define the index sets J, = {k| — Ay = Appr}
that collect all eigenfunctions belonging to the same (Laplacian) eigenvalue. (iii) We
write f(z) = f(z) — ap. This is the “nonflat” part of the fitness function.

3.1.4. Group-Theoretical Fourier Transformation. Let G be a finite group and
let S be a symmetric set of generators of G, i.e., (S) =G, S = S~! and 1 ¢ S, where
1 is the identity of G. A graph I'(G, S) with vertex set G and edges {s,t} if and only
if t71s € S is called a Cayley graph. Cayley graphs are vertex transitive and hence
regular.

DEFINITION 3.1. A Cayley graph T'(G, S) is called quasi-Abelian if S is the union
of some conjugacy classes of G.

Clearly, a Cayley graph on a commutative group is quasi-Abelian, since each
group element forms its own conjugacy class in this case. Some interesting properties
of quasi-Abelian Cayley graphs are discussed in [240, 253]. Below we shall see that
certain algebraic properties of Cayley graphs with Abelian groups generalize to quasi-
Abelian Cayley graphs.

DEFINITION 3.2. For any function f : G — C and any matriz representation
0= {p(s)}sec of G we call the matriz sum

(3.6) flo) =" f(@)p(x)

z€G

the (group theoretic) Fourier transform of f at p.

In the case of Cayley graphs we therefore have to distinguish between the “Fourier
series expansion” w.r.t. the graph T'(G,S), (3.4), and the representation theoretical
Fourier transformation on the group G itself. It will not come as a surprise that there
is an intimate connection between the two.

THEOREM 3.3 (see [192]). Let I'(G, S) be a quasi-Abelian Cayley graph with a
finite group G.
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Table 3.1 FElementary landscapes.
Problem Graph D A Order | Reference
p-spin glass Qor n 2p p definition
NAES Qy n 4 2 [94]
Weight partitioning Qy n 4 2 (94, 211]
GBP (constrained) Qo n 4 2 (6]
Max cut or n 4 2 [6]
Graph a-coloring Qg (a—1)n 2a 2 [211]
XY-spin glass aor (a—1)n 20 2 (81]
for o > 2: cr 2 8sin?(7/a) 2 [81]
Linear assignment T'(Sn,T) n 1 [192]
TSP symmetric T'(Sn,T) n(n—1)/2 2(n—1) 2 (37, 94]
T'(Sn,J) n(n—1)/2 n 2 [37, 94]
I'(A,,C3) | n(n—1)(n—2)/6 | (n—1)(n—2) ? (37]
antisymmetric I'(Sn,T) n(n—1)/2 2n 3 [211]
T'(Sn,J) n(n—1)/2 n(n+1)/2 O(n) | [211]
Graph matching I'(Sn,T) n(n—1)/2 2(n—1) 2 [211]
Graph bipartitioning | J(n,n/2) n?/4 2(n —1) 2 [94, 215, 217]

1) The function ¥ : G — C defined as
ij

(3.7) elj(u) = \/ﬁzpfj(u_l)

is an eigenvector of A(T') with eigenvalue Ay, = dik Y scs Xk(8), where xi(s) =
Trpk(s) is the character of o* at s; its dimension is dy,.

(2) All quasi-Abelian Cayley graphs on G have a common basis of eigenvectors,
and hence their adjacency matrices commute.

(3) A function f: G — R can be expanded in the form

[ di. ~
J<ig with ai'cj: ﬁfﬂ(pk)
ijk

(88)  fls) = akehi(s)

Fast Fourier transform algorithms are known for a variety of finite groups. For a
recent overview, see, e.g., [149, 191].

3.1.5. Elementary Landscapes. Grover and others [37, 94, 211] observed that f
is in many cases an eigenfunction of the graph Laplacian —A (see Table 3.1 for a list
of examples). We say that f is elementary w.r.t. —A if f is an eigenfunction of —A
with an eigenvalue A, > 0. In [212] this notion is extended to calling f elementary
w.r.t. a random walk transition operator iff S f =X f with an eigenvalue A\, < 1.

If f is elementary, then f satisfies the conditions of Courant’s nodal domain
theorem; see section 3.1.6. Elementary landscapes can thus be expected to have few
nodal domains if they belong to a small Laplacian eigenvalue (or to an eigenvalue of
a Markov transition matrix close to 1), while landscapes that are far away from the
ground state will in general have many nodal domains. Such landscapes will appear
“rugged.” Grover [94] showed that

(39) f(i'min) S aop S f(‘%max)y
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where ZTpin and Zyax are arbitrary local minima and maxima, respectively. This
maximum principle shows that elementary landscapes are well behaved: There are no
local optima with worse than average fitness. We shall return to local optima as a
measure of ruggedness in section 4.2.1.

3.1.6. The Nodal Domain Theorem. Discrete Schrédinger operators are defined
as
(3.10) Hf(z) =Y b(z,y)[f(x) - f()] +v(z)f(2),

Yy~x
where b(x,y) = b(y,x) > 0 if and only if {z,y} is an edge of the graph I'; v(x) is an
arbitrary “potential function.” Of course, the graph Laplacian —A is a special case.

A well-known feature of Schrodinger operators on Riemannian manifolds M is
that the nodal domains of their eigenfunctions f, that is, the connected components
of M'\ f71(0), are severely constrained. In order to formulate Courant’s theorem for
graphs, we define for any function f : X — R on I': supp, (f) = {z € X|f(x) > 0},
supp_(f) = {z € X|f(z) < 0}, zero(f) = {z € X|f(x) = 0}, suppl.(f) = supp,(f) U
zero(f), and supp? (f) = supp_(f) U zero(f). A (strong) nodal domain of f is a
maximal connected component of either supp (f) or supp_(f). A weak nodal domain
is a maximal connected component of supp (f) U zero(f) or supp_(f) U zero(f),
respectively.

Let Ay < Xy < --- < )\‘X‘ be the eigenvalues of a Schrédinger operator on I
with corresponding eigenvectors ;. Define M (i) = max{k|A\r = \;} and m(i) =
min{k: A\, = \;}. Hence, m(i) < i < M (i), M (%) = m(i) + mult(\;) — 1, and m(i) =
M (i) = i if and only if \; is a simple eigenvalue of H. With this notation we have the
following theorem.

THEOREM 3.4 (nodal domain theorem). Let f be an eigenvector of H with
etgenvalue \;. Then

(i) there are at most M (i) (strong) nodal domains of f, and

(i) there are at most m(i) weak nodal domains of f.

Various discrete versions of the nodal domain theorem have been discussed in
the literature [44, 49, 80, 230], however, sometimes with ambiguous statements and
incomplete or flawed proofs. An elementary proof can be found in [41]. The interest in
nodal domain properties of graph eigenvectors goes back to Fiedler [60], who showed
that the number of components of supp9 (f) is at most M(i). Some closely related
results on the component structure of supp_ (f) Usupp_(f) can be found in [176].

3.2. Random Landscapes. In many cases, for instance, in applications to spin
glasses, the definition of the landscape contains a number of random parameters. We
therefore define landscapes here as elements of an appropriate probability space.

DEFINITION 3.5. Let X be a finite set and let W be a predicate of landscapes
f: X = R. Arandom W-landscape F over X is the probability space

(3.11) Q={f:X = R|f has property W}, A, p),
where A is a o-field and p : A — [0,1] is a measure.

Let £ : © — R be a Q-random variable; we denote expectation value and variance
of & by E[¢] and V[¢], respectively. In particular we will consider the family

(3.12) VreX; eval,:Q—=R, eval,(f) = f(x).

By abuse of notation we shall write E[f(x)] for E[eval,], the expectation of f evaluated
at x € X. The covariance matriz of the random landscape {2 is given by

(3.13) C.y = Covlevaly, eval,| = E[f () f(y)] — E[f (2)IE[f (y)]-
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Table 3.2 FEzamples of additive random landscapes. The component landscapes 91 and the index
set M, (3.16), are listed together with information on whether the models are uniform
(U), strictly uniform (S), or pseudo-isotropic (P). Properties that are implied by stronger
ones are shown as o. Summarized from the discussion in [188].

Model Component landscapes and index set U|lS|P
Ising spin glass 91(z) = [Iper Tx I1C{1,...,n} . .
SK model as above with |I| =2 . .
Nk landscapes see [188] o | e | o

1 if{ij) ZA B

Graph bipartitioning | ¥;;([A4, B]) = {0 otherwise

1< g o ° o

Asymmetric TSP V1 (T) = 323 Ok 7 (3) 01,7 (i—1) k#1 o | e | o

The matrix C is obviously symmetric and nonnegative definite. Taking the set of all
maps {f : X — R} as base space of the probability space (2, a basis is formed by the
set of orthonormal eigenvectors {1} of the covariance matrix C. An expansion of
the form

(3.14) F@)=) bpu(z)  as xeX
k

is known as the Karhunen—Loéve series or the principal component decomposition of
f- A crucial result is the following.

THEOREM 3.6 (see [115, 122, 144]). Let o7 denote the eigenvalue of C belonging
to the eigenvector Y. Then the coefficients of the Karhunen—Loéve series (3.14) are
uncorrelated random variables satisfying

(3.15) Cov[bg, bj] = 076k, 1<k 1<|X|

Thus o} = V[bi]. Furthermore we have 0> = TrC = ), o7.
Random landscapes of practical importance often exhibit strong regularities.
DEFINITION 3.7. A random landscape F is pseudoisotropic if there are constants
ao, v, and w such that for all x € X,
(i) Elf(2)] = ao,
(i) V[f(x)] = v?, and
(iii) | x|t ZyeX Cyy = w.

3.2.1. Additive Landscapes. Many important random landscapes can be written
as a sum of components with random coefficients; see Table 3.2. More precisely, let M
be a finite index set, let ¢;, 7 € M, be independent, real-valued random variables over
appropriate probability spaces Q; = (R, A;, 11;), and let © = {9J; : X - R|j € M}
be a family of real-valued functions on X. An additive random landscape (arl) is the
probability space (Qx,®;A;, ®;, 1;) with

M
(3.16) Qy = f:XHR\f(m):chﬁj(a:)

In other words, the random landscape is constructed as a linear combination of non-
random landscapes 1J; with independent random coefficients c;.

Using the Karhunen—Loeéve decomposition, (3.14), any random landscape can be
written as a linear combination with uncorrelated random coefficients. Since uncor-
related Gaussian random variables are independent we have the following.



COMBINATORIAL LANDSCAPES 19

LEMMA 3.8 (see [188]). Every Gaussian random landscape is additive.
The most important additive random landscapes exhibit additional regularities.
DEFINITION 3.9. An arl is uniform if and only if
(i) the random wvariables ¢;, i € M, are independent, identically distributed
(i.i.d.) and
(ii) there exist constants a,b € R such thaty_ .y U;(x) = |X|a and Y . 97 (x) =
| X |b holds.
A uniform random landscape is strictly uniform if for any x € X there exist constants
d,e € R with 3~ 9i(z) =d and ), 92 (z) =e.
THEOREM 3.10 (see [188]). A uniform random landscape is pseudo-isotropic if
and only if (i) F is strictly uniform, or (i) a = 0, E[¢;] = 0, and there is a constant
e € R such that Y, 9?(z) = e for allz € X.

3.2.2. Isotropy. Uniformity and pseudo-isotropy are still rather weak properties.
In [210, 216] the notion of an isotropic random landscape was introduced as a “sta-
tistically symmetric model,” that is, as a random landscape with a covariance matrix
that shares the symmetries of the underlying configuration space.

DEFINITION 3.11. A random landscape is isotropic w.r.t. a partition R of X x X
if there are constants ag and s and a function ¢ : R — R such that

(i) E[f(x)] = ap and V[f(z)] = s* for all z € X, and

(ii) Cypy = c(p) for all (z,y) € p, i.e., the covariance matriz C is constant on
the classes p € R.

The notion of isotropy for random landscapes is the analogue of stationarity for
stochastic processes. Following the conventions of Karlin and Taylor [123] our notion
of isotropy would be called “covariance isotropic,” “weakly isotropic,” or “wide sense
isotropic.” For a Gaussian random landscape the notions of (weak) isotropy and strict
isotropy coincide of course.

A partition R of X x X is homogeneous if the diagonal {(x,z)|z € X} is a class of
R. It is class degree regular if for a given class X € R the number [{y € X|(x,y) € X'}|
is independent of x € X.

THEOREM 3.12 (see [216]).

(1) If F isisotropic w.r.t. a homogeneous class degree regular partition of X x X,

then F is pseudo-isotropic.

(ii) If F is isotropic w.r.t. a homogeneous class degree reqular partition of X x X
and E[f(x)] = ag for all x € X, then F is isotropic w.r.t. a homogeneous
coherent configuration if and only if C € (R)).

If A is the adjacency matrix of an undirected graph (or, more generally, the
symmetric transition matrix of a Markov process on X), then we say that a random
landscape is *-isotropic w.r.t. A if E[f(z)] = ap and C € (A), i.e., if C can be written
as a polynomial of A. For association schemes (such as those arising from distance
regular graphs including the hypercube) isotropy and *-isotropy are equivalent.

THEOREM 3.13 (see [216]). An arl is *-isotropic if and only the Fourier coeffi-
cients (w.r.t. an orthonormal basis of eigenvectors of A) satisfy the following:

(i) Ela] = 0 for k #0,

(i) Covlak,a;] = dx;Viar], and

(iii) Viag] = Via;] if ¢; and @y belong to the same eigenspace.

These conditions mean that the Fourier coefficients are uncorrelated and that they
have the same mean and variance whenever they belong to the same mode (eigenspace
of A). One might also say that Fourier and Karhunen—Loeéve series coincide for
*_isotropic landscapes.
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The class of *-isotropic models (on their natural configuration spaces) includes
among others Derrida’s p-spin Hamiltonians, the graph-bipartitioning problem, and
the TSP. On the other hand, most variants of Kauffman’s Nk-model, the XY-Hamil-
tonians, short-range Ising models, or the graph-matching problem are not isotropic.
This has important implications for the structure of these landscapes. In the case of
the Nk-models, for instance, it means that different positions along the sequence have
a different average influence on the fitness, i.e., the expected effect of mutations may
depend explicitly on the sequence position.

3.2.3. Entropy. For a random landscape with measure pu we define the entropy

(3.17) §=- / In o £)du( f).

It is well known that the Gaussian distributions maximize entropy. The proof for the
one-dimensional case can be found, e.g., in [105, Prop. 1.15]. A proof of the general
case is provided in [214] together with a more detailed discussion of the relationships
between isotropy and entropy. The main result follows.

THEOREM 3.14. Let F be a random landscape with positive definite covariance
matriz C with eigenvalues o > 0. Then the entropy satisfies

1 2re 1 Ag| X
3.18 S<Sc=-|X|In— + = 1 .
( ) = ©OC 2| |D‘X|+2;n o2

It is easy to verify that Sc is the entropy of a Gaussian distribution with covari-
ance matrix C.

The two terms in (3.18) allow for a direct interpretation. The Gaussian entropy
Sc attains its maximum subject to a given variance o2 if and only if Ay, = 02/|X],
in which case the second term vanishes. We therefore split the entropy of a random
landscape into three contributions,

(3.19) S = 8,2 + ASc + AS,,

where AS,,; = S — Sc is the entropy loss due to deviations from a Gaussian distribu-
tion, S, is the maximal entropy with given variance o2, and ASc, the second term in
(3.18), measures the entropy loss due to variations in the spectrum of C. In particular,
whenever there are correlations between different vertices, then C is nondiagonal and
hence ASc < 0. More precisely, ASc = 0 if and only if the corresponding Gaussian
random landscape is i.i.d. A Gaussian random landscape is *-isotropic if and only if
ASc is maximal subject to given values of V[ag] in Theorem 3.13. In this sense we
can regard *-isotropy as a “maximum entropy” condition.

3.3. Amplitude Spectra. Equation (3.4) decomposes nonelementary landscapes
in a natural way into a superposition of elementary ones. A natural way of quanti-
fying this decomposition is to consider the projection fa of the landscape f onto the
eigenspace of —A with eigenvalue A. The relative importance of the A eigenspace is
then quantified by the ratio of the landscape variances of fy and f,

(3.20) B(A) = M,

(£,.1)
where, as usual, f(z) = f(z) — f. We call B(A) the amplitude of (the eigenspace
associated with) A. In terms of the Fourier decomposition we obtain immediately
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Fig. 3.1 The estimated amplitude spectrum for a GC landscape with n = 100 under mutation [114].

The configuration space is the Hamming graph Q%OO of sequences taken from the 2-letter

alphabet { G,C}. The most striking feature of the amplitude spectrum of RNA landscapes is
a strong difference between even and odd modes. This can easily be explained in terms of
the physics underlying RNA folding: The major contribution of the folding energy comes
from stacking of base pairs. Hence the magjor changes in free energy caused by a point
mutation will arise from these contributions. Stacking energies are influenced by an even
number of nucleotides depending on the location of the affected base pair within a stack. A
recent comparison of amplitude spectra for different landscapes based on folding short RNA
chains indicates that the amplitude spectra of the free energy landscapes are typical [212].

(see [211])

(3.21) BA) = ) |ak2/ >l
k|-

k|—Apr=Apk Ap#0

For convenience of notation we set B(0) = 0. Thus B(A) >0 and ), B(A) =1.

In many cases, in particular for landscapes on Hamming graphs, it is more conve-
nient to refer to an amplitude by the interaction order (number of the eigenvalue when
eigenvalues are arranged in ascending order without counting multiplicities). Hence
one typically finds B,, instead of B(pa) for the pth eigenspace of an a-letter Hamming
graph. Obviously, the Laplacian —A can be replaced, for instance, by a transition
operator if desired. In the case of random landscapes one naturally considers the
expectation values E[B(A)].

Amplitude spectra are a very useful way of classifying nonelementary landscapes.
We mention just a few examples here.

e Asymmetric TSPs are superpositions of symmetric and antisymmetric TSPs
with equal weights [211]. Together with Table 3.1 this observation explains
the behavior of the TSP mentioned in the introduction: with transpositions
the symmetric and the antisymmetric versions of the TSP have very similar
Laplacian eigenvalues and hence essentially the same correlation structure. In
the case of reversals, however, we have a smooth landscape belonging to the
third eigenvalue for symmetric C, and an essentially uncorrelated landscape
corresponding to a highly “excited state” for the antisymmetric component.
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e Assignment problems also have permutations as their underlying configura-
tions [27, 151]. The quadratic assignment problem consists in general of three
contributions corresponding to the three smallest nonzero eigenvalues of the
Laplacian of the Cayley graph T'(S,,7) [192].

e The landscape of the low autocorrelated binary string problem consists of a
dominating 4-spin contribution and an asymptotically vanishing 2nd-order
component [211].

e The free energy landscapes of 2-letter RNA sequences consist predominantly
of the small even modes p = 2,4,6,8 [114], while the biophysically more
relevant 4-letter alphabet AUGC has an additional large p = 1 component;
see Figure 3.1. See section 5.1.1 for an explanation of the RNA model.

e Widely used methods for reconstructing phylogenies from molecular data,
such as maximum parsimony and maximum likelihood approaches [57, 58],
require the maximization of a score function on the set of all leaf-labeled
trees; see Figure 2.1. Amplitude spectra show that these landscapes are
highly correlated [17].

Amplitude spectra of landscapes arising from more complicated models, such as evolv-
ing cellular automata [40], RNA folding, or electronic circuit design have been com-
puted as well [114, 192, 232].

4. Ruggedness and Neutrality. Ruggedness intuitively is just the opposite of
smoothness. Neutrality, i.e., the existence of neighboring configurations with the
same fitness, appears to be just a way of achieving a “smooth” landscape. Therefore
it comes as a surprise that ruggedness and neutrality turn out to be independently
tunable parameters.

4.1. Ruggedness and Autocorrelation Functions. The ruggedness of a land-
scape is most easily quantified by measuring the correlation of fitness values in “neigh-
boring” positions. Weinberger [242, 243] suggested the following procedure. Given a
Markov process on X, we sample the fitness values f(z(®)), interpret them as a time
series, and compute the autocorrelation function of this time series. Let T be the
transition matrix of such a reversible Markov process with stationary distribution ¢g.
The (expected) autocorrelation function along a T-random walk on X is then

—1 B B
1) T(t)<zf2($)sﬁo(ﬂﬂ)> 3 F@ T hoty) = L e,

zeX yeX <f~a f~>sﬂo

By expanding f w.r.t. eigenvectors of T it can be shown [211] that

(4.2) r(®) = 3 Br(W)X,

A#£L

where Br(\) are the amplitudes of f w.r.t. the eigenspaces of T. Thus a landscape
f is elementary w.r.t. a transition operator T if and only if the “random walk” auto-
correlation function is exponential, 7(t) = AL.

For regular graphs T, A and —A have the same eigenspaces, and the eigenvalues
of the transition matrix can be expressed in terms of the Laplacian eigenvalues as
A=1—A/D, where D is the vertex degree of the graph. Thus (4.2) becomes

(4.3) r(t)=>_ B(A)(1-A/D)".

A#£0
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The information contained in r(s) is therefore equivalent to the amplitude spectrum.
A landscape is highly correlated if r(s) decays slowly, i.e., if B(A) is large for small
eigenvalues A. The correlation length

(4.4) zzzr(t)2D2¥

t=0 A#£0

may be used to condense the correlation information into a single measure of rugged-
ness.

Most of the early work on RNA landscapes, e.g., [73, 225], used a different type
of correlation measure based on the Hamming distance. In [211, 216] this approach
was generalized to relations on R on X x X.

DEFINITION 4.1. Given a relation R on X x X, the autocorrelation of f w.r.t.
R is

_ KPR Eemerf @) = DY) - 1)

(4.5) PR = RIS, (@ - DUw T

~—

On Hamming graphs, for instance, it is natural to consider the distance classes,
ie, (x,y) € Rq if and only if dy(z,y) = d. Such distance-dependent correlation
functions have been considered also for some combinatorial optimization problems
[4, 5, 204, 215]. Given a partition of X x X, we may of course regard p as a function
of the classes of this partition. Furthermore, if this partition is sufficiently “nice,”
then the correlation function p itself also has useful algebraic properties. An example
is the following.

THEOREM 4.2 (see [209]). Let f be a landscape on a graph ' that has a ho-
mogeneous coherent algebra Q[T). Then r(s) is exponential if and only if o is a left
eigenvector of the collapsed adjacency matriz A.

In practice o(d) and r(t) convey the same information. Explicit expressions re-
lating these functions with each other can be found in [211]. In particular, we have
0(1) = r(1) for the nearest neighbor correlation, which is the most commonly used
parameter of ruggedness.

4.2. Ruggedness and Local Optima.

4.2.1. The Number of Local Optima. Local optima play an important role
since they might be obstacles on the way to the optimal solution. In the theory of
disordered systems, local minima of the energy function are usually called metastable
states. For the sake of definiteness we shall consider local minima, i.e., configurations
Z € X satisfying

(4.6) flz) < fly) VyeN(z).

Analogous expressions for local maxima can be obtained by replacing f with —f. The
number and distribution of local minima provide an alternative approach to landscape
ruggedness.

In [173] Palmer proposed calling a landscape f rugged if the number M of local
optima scales exponentially with some measure of “system size” such as the number
of cities in a TSP or the number of spins in spin glasses. Unfortunately, there is in
general no simple way of computing M; without exhaustively generating the land-
scape. Alternatively, one can of course estimate My by checking whether a randomly
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generated x € X is a local minimum. Numerical data of this kind are reported, e.g.,
in [81, 218, 217]. Methods from statistical mechanics can also be used to obtain the
scaling of the expected value E[M] with the system size for a variety of disordered
systems; see, e.g., [24, 43, 45, 59, 93, 190, 226, 228].

A nonrigorous result is of particular interest in this context. The correlation length
congecture [218] suggests that the number of local optima of a “typical” landscape can
be estimated from its correlation length ¢, (4.4). More precisely, one expects on the
order of one local optimum on a mountain with a radius that is determined by the
correlation length ¢. Numerical surveys provided good evidence that the correlation
length conjecture yields a fairly accurate prediction of the number of local optima
(metastable states) of isotropic elementary random landscapes; see [81] for a summary
of the numerical data.

4.2.2. Basins. To each local minimum Z there is an associated basin B(Z) defined
by means of the steepest descent algorithm: Starting with zg = y we choose at each
step the neighbor zx11 € N(zk), f(2k+1) < f(zx) with the smallest fitness value and
repeat the procedure until it terminates when zx41 = & is a local minimum. The
notion of a basin hence may become ambiguous when there is “local neutrality” in
N(z), i.e., if there are x € X and y,y’ € N(z) with f(y) = f(y’). It is an open
question how the basin should be defined in full generality. It is not surprising that
the distribution of basin sizes is crucial for the performance of simple optimization
heuristics.

Probably the simplest approach is to generate an initial configuration at random
and then to use steepest descent to reach the minimum of the basin. The question
then becomes how likely it is to hit the basin of the global optimum by chance. Let
aj, j =1,...,My, denote the sequence of relative basin sizes |B(Z)|/|X|.

THEOREM 4.3 (see [83]). The probability p(m) that in a sample of m randomly
chosen configurations we find at least one configuration in each basin is

My
(4.7) p(m) = (~p)Mr=* > (o, + -+ o)™
k=0 1<j1 < <jpr <My

From this rather complicated expression one can deduce, for instance, the follow-
ing corollary.

COROLLARY 4.4 (see [83]). Suppose My > 1, m = a*My for some a > 0, and
the relative basin sizes are uniformly distributed. Then p(m) = exp(—1/a).

In other words, sampling O(Mfc) points at random provides a finite chance to find
the basin of the global optimum.

However, so far there does not appear to be a good method for estimating basin
sizes beyond exhaustive enumeration or random sampling. An important aspect is
the correlation between basin size and fitness of the minimum: In highly correlated
landscapes, i.e., landscapes in which the amplitude spectrum shows large values of
B(A) for small values of A only, it appears that deeper minima have larger basins
[59, 213].

4.2.3. Barriers and Depth. The basins of local minima are separated by saddle
points and fitness barriers. Let & and g be two local minima and let p be a path in
X from Z to . Then the fitness barrier separating & from g is

(4.8) fl#, 9] = min {max [f(z)|z € p| | p: path from £ to Q} .
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Fig. 4.1 Barrier trees. A guide to reading the trees is given on the left using a simple example
(Gaussian random numbers on a Qg): The leaves 1-12 denote the local minima. The
global minimum 1 is marked with an asterisk. Saddle points are labeled with capital letters
from A to G. The saddle points B, C, D, E are “degenerate,” indicating that the lowest
energy paths leaving, e.g., 4,5,8 run through a common exit point. Note that all 27 = 128
configurations have pairwise distinct energies, hence there are no two distinct saddle points
with the same energy, which may exist in general. The barrier of 5 is B(5) = E(D) — E(5)
along the lowest path from 5 to 4, while B(4) = E(E) — E(4) along the lowest path from 4
to 1*. The tree on the right shows all local minima and their barriers for the “New Mexico
weekend trip TSP” (Figure 1.3) with transpositions as move set. The high symmetry
reflects the fact that the length of symmetric TSP tours does not change when the starting
point is shifted along the tour and when the tour is traveled in reverse order.

A point 2 € X satisfying the minimax condition in (4.8) is a saddle point of the
landscape. The saddle-point energies f[#,9] form an ultrametric distance measure
on the set of local minima; see, e.g., [160, 177, 233]. This hierarchical structure can
be represented by the barrier tree of the landscape [18, 64, 67, 84, 163, 239]; see
Figure 4.1. Its leaves are the local minima and its internal nodes correspond to saddle
points.

The barrier enclosing a local minimum is the height of the lowest saddle point
that gives access to a more favorable minimum. In symbols,

(4.9) B(#) = min { f[z,9] — f(@)[7: f(§) < f(@)}.

If B(Z) = 0, then the local minimum Z is degenerate. It is easy to check that (4.9) is
equivalent to the definition of the depth of a local minimum in [128]. For metastable
states it agrees with the more general definition of the depth of a “cycle” in the
literature on inhomogeneous Markov chains [8, 30, 31]. The information contained in
the energy barriers is conveniently summarized by two global parameters. Let €2¢ be
the set of all global minima of f:

(4.10) D:maX{B(s)fS¢Qf}7
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B(s) }
———————|S Q .
7 — flmm|”
Both parameters are easily obtained from the barrier tree. The depth D and difficulty

¥ [30, 31, 98, 128, 195] play a crucial role in the theory of simulated annealing; see
section 6.1.

(4.11) P :max{

4.3. Neutrality. In this section we consider exclusively landscapes on finite sim-
ple undirected graphs with vertex set X and edge-set E. The number of neutral
neighbors of x € X is

(4.12) v(z)= Y 5(f(x), f(v),

yEN ()
which can again be regarded as a landscape on I'. Empirically, it turns out that
the important classes of landscapes arising in evolutionary biology and the theory of
computer simulations exhibit a large degree of neutrality. We postpone a discussion
of these cases until section 5. Below we briefly discuss two mechanisms for generating
neutrality in simple models.

4.3.1. Neutrality from Symmetry. A rather trivial cause of neutrality are sym-
metries in the fitness function. In some cases these symmetries arise from embedding
a combinatorial optimization problem in a state space that is too large. We briefly
outline one example.

Given a weighted graph with an even number n of vertices and a symmetric weight
matrix W, the task of the graph-matching problem (GMP) is to determine a set & of
n/2 edges (ix,jx) with distinct incident vertices (a matching) such that

n/2

(4.13) f(&) = Z Wi, ik
k=1

is maximized. A matching & is conveniently encoded as a permutation m such that
{m(2k—1),7(2k)} is an edge of the matching. The resulting landscape is elementary on
the Cayley graph I'(S,,, 7) with the transpositions as generators. Obviously, canonical
transpositions of the form 7oi_1 o leave f(§) unchanged since they merely exchange
the endpoints of the same edge and hence lead to the same matching.

4.3.2. Neutrality in Additive Random Landscapes. At present the most inter-
esting approaches to neutrality focus on random landscapes. Hence we shall consider
the random variable version of (4.12), as follows.

DEFINITION 4.5. Let F be a random landscape. The random variable

(414) Vg : F— Z, Vm(f) = Z 5(f($)7f(x/))

z’ €N (x)

is called the neutrality of F in z.
It is convenient to define the following parameters for all y,y’,y” € N(z):

(4.15) ce(y) = |{j € M | 9;(x) #9;(y)}

(4.16) we(y',y") = {7 € M |9;(x) #9;(y) Ad;j(x) #9;(y")},

2
—_ 1 1
(4.17) ==E m; (l/m - X,l;%/) ,

b
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where x € X is an arbitrary vertex. The quantity = is the expected variance of the
family v, across a given landscape.

Theorem 4.6 below describes quite completely how additive random landscapes
behave when their coeflicients ¢; vanish with a nonzero probability. This class of
random landscapes is, so far, the only one for which a detailed analysis of neutrality is
available. Newman and Engelhardt [165] and [12] considered variations of Kauffman’s
Nk landscape with integer coefficients, which also leads to nonvanishing neutrality in
general.

THEOREM 4.6 (see [188]). Let F be an arl with coefficients ¢; having the property

(4.18) p=po - €0+ (1= po)  Va,o2

where €y is the measure concentrated in 0, vy 52 is the Gaussian measure with mean
a and variance o2, and g is some real number with po € [0,1]. Then we have for
finite sets N(x)

YyEN ()
(4.20) Vve] = Z Mg:(y Yea(y') [ung(y W' 1} :
y/7y//
_ 1 1
(4.21) == X ZV(Vy) - x| ZCOV(Z{W vyr)
Y vy’

1 ) 1 ’
+W;E[Vy] —<|X|%:]E[Vy]> ;

where ﬁ >y Covivy,vy) > 0.

The reason for considering measures p with the property (4.18) is the following:
let M be a finite index set and 7n;, j € M, be some set of nonzero real constants.
Then we have for independent random variables ¢;, j € M,

u has property (4.18) = pu Z en;=0p = ,uloM‘.
jEM

In other words, in order to have f(z) = f(y) with y € N(x) exactly ¢;(y) (see (4.15))
coefficients ¢; have to be zero. In the case of measures of the form 19-ec+(1—po) Vo o2
for £ > 0 it is possible to construct and analyze neutral landscapes in a somewhat
analogous way.

In [188] a number of applications of Theorem 4.6 are discussed. Here we restrict
ourselves to the simplest one, as follows.

COROLLARY 4.7. For a p-spin model with coefficients c¢; satisfying (4.18) we have

(22)  Ep)=npir),
(423) V] =n(n- 1)/«2;(:1) [MJ(%) a 1} +n ugzj) {1 - Mg;ﬁ-i)] :

(4.24) Z=0.
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Consider a spin-glass model where the spins are arranged on a finite-dimensional
lattice. That is, independent of the size of the system, there is only a finite number
of lattice neighbors for each spin. In short-range spin glasses, the only nonzero in-
teraction coefficients link lattice neighbors, i.e., all but O(n) coefficients vanish. A
short-range spin glass is therefore characterized by po = 1 — ==, where 2 > 0 is a
parameter determined by the connectivity of the lattice. As a consequence we have
for every short-range spin glass
(4.25) lim E[v/n] =e™® and lim V[y/n] =0.

n—oo n—oo

The p-spin models are elementary w.r.t. spin-flip moves; see Table 3.1. On the
other hand, we may use pg to tune the degree of neutrality to any desired value.
Conversely, given a value of E[v], we may choose p arbitrarily, thereby prescribing
any desired degree of ruggedness. Thus we have established that ruggedness and
neutrality are independent features of (random) landscapes.

5. Landscapes and Genotype-Phenotype Maps.

5.1. General Considerations. In the context of RNA sequences, fitness often
does not depend on the particular sequence of nucleotides but on its actual (spa-
tial) structure. That is, there exists a generic partition on the configuration space,
the elements of which are called phenotypes, representing classes of genotypes. Note,
however, that two phenotypes do not necessarily have different fitness values. Ac-
cordingly, we can decompose the landscape as follows:

(5.1) Genotypes — Phenotypes — Fitness.

Obviously, many properties of the fitness landscape are closely related to properties
of the genotype-phenotype mapping. We will study these connections in the following
using ribonucleic acids (RNA) and sequential dynamical systems (SDSs) as paradigms.
We will call the preimage of a fixed phenotype its neutral network!' and we will discuss
the properties and role of neutral networks. In the following we will provide some
background on RNA and SDS.

5.1.1. RNA. RNA acts in viruses and cells as a messenger (mRNA), carrying the
genetic information from the DNA to the translation apparatus, and as transfer RNA|
or tRNA for short. It plays the role of an adapter for the synthesis of proteins and
finally as ribosomal RNA (rRNA) it is an integral part of the ribosome and exhibits
catalytic activities in natural polypeptide synthesis [33, 34, 246].

RNA thus serves two purposes: (i) storage of genetic information based on a one-
dimensional template that can be read and copied on request, and (ii) catalytic proper-
ties as ribozymes which require three-dimensional structures in order to gain efficiency
and specificity in processing specific substrates. As demonstrated by Spiegelman, in
vitro evolution experiments can be performed to select RNA molecules that are capa-
ble of fast replication [154]. Indeed, replication rates are optimized in serial transfer
experiments [54, 121, 196]. In case one wants to optimize properties other than repli-
cation, intervention is required making use of special techniques, which interfere with
natural selection. A well-known example is represented by the SELEX method—an
acronym for systematic evolution of ligands by exponential enrichment—which allows

LAt this point it seems more justified to call the preimage a neutral set since it is not clear that
there are any edges among the vertices. We will justify the notion neutral net later in the text, as it
turns out that there are many edges and various connectivity properties in the preimages
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GCGGGAAUAGCUCAGUUGGUAGAGCACGACCUUGCCAAGGUCGGGGUCGCGAGUUCGAGUCUCGUUUCCCGCUCCA

fitness

Fig. 5.1 RNA folding landscapes. For any RNA sequence, which can be viewed as a string from
the alphabet {A,C, G, U}, a secondary structure which minimizes energy is computed using
a dynamic programming algorithm. The resulting outerplanar graph (left) is a useful ap-
proximation to the three-dimensional shape of the molecule. In computational studies the
fitness of an RNA sequence is evaluated as a function of its secondary structure.

one, for example, to create molecules with optimal binding constants [229]. The SE-
LEX procedure is a protocol which isolates high-affinity nucleic acid ligands for a
target, for example, a protein, from a pool of variant sequences. Multiple rounds of
replication and selection exponentially enrich the population of species which exhibit
the highest affinity, i.e., which fulfill the required task. This procedure thus allows for
simultaneous screening of highly diverse pools of nucleic acid molecules for different
functionalities (for a review see, e.g., [53, 133]). Results from those experiments clearly
demonstrate the essential property of RNA molecules: that genotype, i.e., the RNA
sequence, and phenotype, associated with the structure, are combined in one molecule.

Computer models of an RNA toy world based on the explicit computation of
secondary structures (see Figure 5.1) were pioneered by the Vienna group [72, 118,
189, 199, 200, 201] and led to the first realistic models of biological landscapes; see
section 5.2. For a recent review of various aspects of the RNA world in silico, see [66].

5.1.2. Sequential Dynamical Systems. SDSs are discrete dynamical systems
that were introduced to capture basic features of computer simulations [13, 14, 15, 16,
161, 185]. An SDS consists of (a) an undirected graph Y (with vertex set {1,...,n}),
(b) a collection of Boolean functions (F;) that update the state of each vertex i as
a function of its neighbors while leaving all other vertex states unchanged, and (c)
an update schedule m, defining the order in which the vertices are updated. The
composition of the maps F; in the order prescribed by the update schedule 7 yields
the SDS [§,7] = [, Fr(s) : F3 — F3. Here F, denotes the finite field with 2
elements.
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Fig. 5.2 A particular class of SDSs are sequential cellular automata (sCA). Here we display
the space time evolution of four different sCA over Circys with underlying rule 90
(applied for each vertex) and fized initial condition. The sequential updates moni-
tored are (a) (1,2,...,n) (natural order), (b) (1,3,...,75,2,4,...,74) (odd-even), (c)
(2,4,...,74,1,3,...,75) (even-odd).

Ezxample. Let Y = Circy be the circle graph on 4 vertices.
| 2
4—3

Suppose we have the parity function ps : F3 — Fa, ps(21,29,23) = >, 2; mod 2
for each vertex. Then we obtain for the update schedule (1,2,3,4) with initial state
(1,1,0,0)

Fi(1,1,0,0) = (0,1,0,0),

Fy0 Fi(1,1,0,0) = (0,1,0,0),
Fsyo0Fyo0Fi(1,1,0,0) = (0,1,1,0),
FyoFs0Fy0F(1,1,0,0) = (0,1,1,1),

and consequently we have [FCirc4v (1,2,3,4)](1,1,0,0) = (0,1,1,1).

One important problem is to analyze the set of all schedules 7’ that lead to
the same dynamical system. In Figure 5.2 we present examples on how the update
schedule affects the dynamics of an SDS.

5.2. RNA Secondary Structure Folding.

5.2.1. Genotypes and Phenotypes for RNA. In the following we will consider
RNA sequences of constant length, represented by n-tuples, (z1,...,z,), with z; € A,
A being a finite alphabet formed by the nucleotides. The basic mutational mechanism
consists of random point mutations that occur with independent probability. This
motivates us to call two sequences adjacent if they differ in exactly one nucleotide.
Sequence space with this adjacency relation is referred to as Q7 (the generalized n-
cube), where a = | A]. In Q" each sequence has (o — 1)n neighbors and the maximal
distance between two sequences is n.

RNA phenotypes are in general molecular structures of various resolutions. Here
we will consider the following class of RNA secondary structures [241].

DEFINITION 5.1. A secondary structure over n vertices {1,...,n}, s,, is a vertex-
labeled graph with an adjacency matriz A(sy) = (@i k)1<ik<n sSuch that
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® a1 =1for1<i<n-—-1,

o for each i there is at most a single k # i — 1,1+ 1 such that a; ), =1,

o ifa;j=ar;=1andi<k<j, theni<l<j.
We call an edge {i,k}, |i — k| # 1, a base pair. A vertex i connected only to i—1 and
i+ 1 is called unpaired.

The combinatorics of secondary structures viewed as abstract graphs has been
studied in detail; see, e.g., [103, 109, 116, 197]. A particular result from asymptotic
combinatorics on secondary structures—with certain restrictions such as minimum
helix length—is that their number asymptotically becomes O(a™) with a < 2 [109].
This result immediately implies that there are structures having preimages of ex-
ponential size. Moreover, the RNA model allows for several generic choices of the
fitness assignment, such as, for example, using the thermodynamic stability and the
degradation constant of the corresponding secondary structure.

5.2.2. The Intersection Theorem. One important question in the context of
neutral networks is how close two such networks come in sequence space. In order
to investigate this question we need some terminology: We call a nucleotide sequence
(x;) compatible w.r.t. a secondary structure s,, if and only if for all a; ; with a; ; =1
and k #£ 1 — 1,74 1 the nucleotides x; and xy could in principle form a Watson—Crick
base pair. We denote the set of compatible sequences w.r.t. some secondary structure
sn by C(sy). Note that we have

Clsn) = QM x QF,

where ni,no are the numbers of unpaired bases and base pairs, respectively, and (3
is the size of the alphabet formed by the base pairs, i.e., all pairs of nucleotides that
can actually establish a chemical bond.

In terms of combinatorics, the uniqueness property of the Watson—Crick base
pairs of an RNA secondary structure corresponds to an involution (viewing the base
pairs as transpositions within the symmetric group, S, [187, 189]).

THEOREM 5.2 (see [189]). Let sk, s2 be two secondary structures with the sets of

compatible sequences C(sk), C(s2). Then

(5.2) C(sh)yn C(s?) # @.

Accordingly, for any two secondary structures there exists a sequence that could
in principle realize both, from which we can conclude that the corresponding neutral
networks come relatively close in sequence space. This in not true for more than two
sequences. A necessary and sufficient condition for the intersection of the compatible
sets of an arbitrary number of secondary structures to be nonempty can be found in
[65]. An investigation of the structure of the intersections of random structures can
be found in [183].

The above theorem is the basis of an experimental study [198] in which an RNA se-
quence is presented that simultaneously realizes two structurally dissimilar ribozymes.
Of course, this sequence is taken from the intersection of the corresponding sets of
compatible sequences.

5.2.3. Connectivity of Neutral Networks. In the following, we will denote a
probability measure by pu,, where n refers to some index of the corresponding prob-
ability space 2, (here, a random graph) over n vertices. Let P, be some property



32 CHRISTIAN M. REIDYS AND PETER F. STADLER

(event) in Q,,. Then we write “P, holds almost surely (a.s.)”? if and only if we have
lim, o0 pn{Ppn} = 1.

The random graph model. Let Q be a generalized n-cube over an alphabet of
length «. Let T';, be a subgraph of Q" and p,{T'y} = )\lnrnl(l — X))@ Tl Then we
call Q7 = the random induced subgraph model.

For RNA folding landscapes we can interpret the probability A as the neutral-
ity degree, i.e., the number of neutral neighbors, v, divided by the total number of
neighbors, (o — 1)n.

THEOREM 5.3 (see [179]). In QF , , let CV be the largest component of a on-

cln(n

subgraph T'y,. Then there exists a constant ¢ > 0 such that for A\, > the subgraph

C,(L ) 18 a giant component, i.e.,
|C,(l1)| ~ Tyl a.s.

holds.

It may be of interest to note that Theorem 5.3 establishes the existence of the
giant component indirectly. The proof gives no clue on how to construct a path
between two vertices and, moreover, on how long such a path might be. The explicit
construction of (short) paths between vertices of neutral networks would therefore be
of particular interest and leads to a deeper understanding of the likelihood that such
a path would be realized in an evolutionary search. In fact the next result provides
such a constructive proof, although we will need the higher probability A, > n~% with
0<a<1/2.

Giant components of random subgraphs of Q3 obtained by independent selection
of Qf-edges have been investigated in [1].3 There the authors gave a sharp threshold
value for the existence of a giant component at p = 1/n. Giant components in the
random graph G, , exhibit the threshold value p = 1/n [55]. Although the actual
threshold values for G,, , random subgraphs of QF and random induced subgraphs
of generalized n-cubes are very similar, the corresponding methods of proof differ
significantly: in the case of giant components of G, ,, a branching process can be used
whereas the above theorem and [1] are proved indirectly by showing the impossibility
of keeping two “big” components separate in two separate randomizations.

THEOREM 5.4 (see [182]). Let 0 < a < 1/2 and let k € N with k > 1132, In

Z,/\n let Ap be such that Ing € N; Vn > ng, Ay > n™% holds. Finally, let dg» and
dr,, denote the distances in the graphs QF and I'y,, respectively. Then

VP.QeQL lim p{dr,(P.Q) < [2k+3]de;(P.Q)} =
holds. In particular for constant A\, = XA we have
YPQeQr lim pn{dr, (P,Q) < Tdoy(P,Q)} =\,
n—00 «

Let us finally come to the last result on generalized n-cubes. From now on we
will assume a constant probability A > 0.

2Strictly speaking the notation “P, holds asymptotically almost surely (a.a.s.)” would be ap-
propriate. We will use the notation “almost surely” (a.s.), which is standard in the random graph
literature [22].

31In [1] the term giant component is defined slightly differently.
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THEOREM 5.5 (see [179]). In the random graph Qy, \ the probability \* = 1 —

Va1 is the threshold value for connectivity. That is, a.s. no random graph is
connected for A < X\* and a.s. every random graph is connected for A > \*.

The above theorem is in fact well known for binary n-cubes. However, the proof
in [22] is based on an estimation of some edge boundary and utilizes in this context
an isoperimetric inequality from [102].

The proof of Theorem 5.5 does in fact explicitly construct “many” independent
paths which eventually lead to the desired result: Let P,Q be arbitrary vertices of
the random graph. As in Theorem 5.4 we can reduce the case to P, having finite
Hamming distance. For A > A*, one then shows that any vertex has an arbitrary
finite number of neighbors in the random graph. Using these neighboring vertices one
proceeds in a manner completely analogous to the proof of Theorem 5.4. To prove
that \* is a threshold value we show that there exist isolated vertices in the case of
A < A*. This can be proved by considering the random variable counting the isolated
vertices, Z. Tt is obvious that Z has mean p = X o™ (1 — \)(*~ D™ and for finite p one
can show that Z becomes Poisson in the limit of large n. From this we can conclude
that for A < A* and arbitrary natural number ¢, there are at least ¢ isolated vertices
in the random graph a.s.

Extensive computational studies on RNA landscapes indeed show that the neu-
trality v/(a — 1)n is above the threshold value A\* for many RNA structures and that
there are indeed extensive (almost) connected neutral networks [95, 96].

5.2.4. Neutral Paths. Neutral paths were used to gain information about the
structure of the (connected components of) neutral networks in a series of computer
experiments on RNA folding landscapes [95, 96, 200]. In each step we attempt to find
a neutral neighbor such that the distance from the starting point increases.

In a random subgraph I',, ,, of a distance regular graph* T',, the probability that
a neutral path with d steps cannot be elongated any further equals (1 — p)a(d), where
a(d) denotes the number of “forward steps,” i.e., the number of adjacent vertices
actually increasing the distance to the starting point. For Hamming graphs QF, for
instance, we have a(d) = (a — 1)(n — d). The probability that a neutral path of T, ,
terminates after exactly d steps is given by (see [188])

d
(5.3) Prob[£ = d] = (1 — p)*@ x H {1 (1 —p)d-D]
d'=1

Next, let L(n) = diam(T',,) and @ = d/L(n). We consider a sequence TI',, of distance
transitive graphs such that L = L(n) — oo and a(d) can be written in the form a(d) =
D(n)¥(z), where D(n) is the vertex degree of I',, and ¥ : [0, 1] — [0, 1] is differentiable.
Let w,, tend to infinity arbitrarily slowly and suppose ¢ = lim,,_,, log D(n)/log L(n)
exists. Then Prob[£/diam(T",) = z] has a maximum at

1 if p=wylogD(n)/D(n),
(5.4) z¥=¢0<s<1 if p=ClogD(n)/D(n), C>1/¢,
0 if p=ClogD(n)/D(n), C<1/C.

For an example, see Figure 5.3. Neutral paths provided the first evidence for extended
neutral networks in RNA models [200].

4A connected graph is distance transitive if its automorphism group acts transitively on D; =
{(z,y) | d(z,y) = i} for i < diam(T'y,). It is distance regular if the distance classes D; form a coherent
configuration. Distance transitivity implies distance regularity.
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Fig. 5.3 (left) Distribution of a scaled neutral path lengths L/n on random subgraphs of Q1% for
different values of p. (right) Average length of a neutral path for different sequence length n.

5.3. Sequential Dynamical Systems.

5.3.1. Genotypes and Phenotypes of SDSs. The schedules are the SDS-
genotypes and form the update graph U(Y) whose vertices are permutations, written
as n-tuples without repetition: (i1,...,4,). In order to understand what adjacency
of schedules means, let us consider Y = Circy:

]

1—2
Now suppose we apply the maps Fi,..., Fy according to the orderings (1,2, 3,4) and
(3,2,1,4). Since 2 is adjacent to 1 and 3 there exist maps Fiy,..., Fy such that
FioFyo0F30F, # F30Fyo0 Fy o Fy (see Figure 5.4 for an illustration). That is,
in general we cannot transpose vertices 1 and 3 although they are not adjacent in
Circy. Hence, if we want to define an adjacency relation between two permutations
= (i1, sin), ™ = (j1,---,Jn) such that [['_; Freyy = [Ir_1 Fr(r),y holds for
all maps Fi,...,F,, we can at most allow the transposition of consecutive coordi-
nates (being Y-vertices) ig,ik+1 in (i1,...,%,). In fact it is straightforward to show
that every transposition of consecutive nonadjacent vertices iy, i1 leaves the SDS
invariant [16]. Hence two schedules (i1,...,%,) and (hy,...,h,) are adjacent (point
mutants) if they differ by exactly one flip of two consecutive coordinates that are not
Y -neighbors (or equivalently if and only if (a) i, = hy¢, £ # k,k+1 and (b) {ig,ix1+1} is
not adjacent in Y'). Note that the above definition of adjacency leads to a maximum
of n — 1 neighbors and a maximal distance of (g) between two schedules.

U(Y) induces equivalence classes of schedules by identifying any two vertices
that are connected by a path in the update graph, which we will write as m ~y 7.
For an illustration, see Figure 5.4, where we draw the update graph of the square,
Y = Circy. It turns out that there exists a one-to-one correspondence between sets
of equivalent schedules and the acyclic orientations of Y, ¢y : S,/ ~y— Acyc(Y);
see Figure 5.5 [180]. An acyclic orientation of an undirected graph Y is obtained
by assigning directions on its edges such that the resulting directed graph is a tree.
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(1234)  (2341) (3412) (4123
(4321) (3214) (2143) (1432

(1243) (3241) (4312) (2314)

| | | |
(1423) (3421) (4132) (2134

(1324)—(1342)  (2413)—(2431)

| | | |
(3124)—(3142)  (4213)—(4231)

Fig. 5.4 The update graph of Circa, U(Circa). U(Clircy) has 24 vertices, eight of which are isolated
points (corresponding to the Hamiltonian paths in Circa), four components of size 2, and
two components of size 4.

Acyclic orientation 1 Base graph Acyclic Orientation 2

Fig. 5.5 Acyclic orientations of an undirected graph are obtained by assigning directions to its edges
such that the resulting directed graph is cycle-free.

We denote the set of acyclic orientations of Y by Acyc(Y). The number of acyclic
orientations of a graph Y is given by the absolute value of its chromatic polynomial at
(—1) [222]. Accordingly, the acyclic orientations of Y can be viewed as the phenotypes
of the mapping

(5.5) Ay 1 U(Y) — Acye(Y).

It is worth mentioning that Ay is highly nontrivial. For example, determining the Ay-
preimage of an acyclic orientation corresponds to the computation of the number of
linear orders that are compatible to a given partial order (which is naturally induced
by the acyclic orientation).

Further, it is clear that SDSs by construction allow for a variety of genotype-
phenotype maps. Unlike the RNA case, where we have fixed genotypes and there are
only relatively few concepts of phenotypes, as with, for example, secondary structures
or tertiary structures, SDS genotype-phenotype maps depend on the choice of the base
graph, Y. From this point of view RNA seems to be a particular case since of course
the secondary structure notion strongly depends on the linear sequence realizing it.
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For SDSs the graph Y yields both the update graph U(Y) whose vertices are the
genotypes and the phenotypes that factor through acyclic orientations:

Uy) ~AcycY

Y

5.3.2. Neutral networks. Now we can ask how well we can search for a specific
schedule of a simulation by simply using some analogue of point mutations in the
update graph. Of course, this question is motivated by our findings in the RNA case.
In fact, straightforward comparison of (generalized) n-cubes Q7 (the search space
for RNA) and the update graphs (the search space for SDSs) reveals that both are
excellent search spaces. Explicitly we have deg(Q") = (a — 1)n, deg(U(Y)) <n -1,
diam(Q2) = n, and diam(U(Y)) < (% ). Furthermore |Q%| = o™ and |U(Y)| = n!
hold. In view of this similarity, it remains to analyze whether the genotype-phenotype
mapping constructed in (5.5) exhibits a significant degree of neutrality.

We will next give a concentration result for the number of acyclic orientations of
the random graph G, , from which we can draw the following two conclusions:

(a) the number of neutral networks is sharply concentrated around its mean;

(b) the average size of a neutral network N is given by

n

(5.6) p -0 p)'].

THEOREM 5.6 (see [180]). Let G, be a random graph, i.e., the graph over
{1,...,n} where each edge is selected with independent probability p, and let
logy(JAcyc(Grp)l) : Gnp = N be the random variable counting the number of acyclic
orientations of G p. Then logy(|Acyc(Grp)|) is sharply concentrated around its
mean, i.e., for all A > 0,

tinp({ | 10g3(|Acyc(Gop)]) — Ellogy(|Acye(Grp)))] | > A/n(n = 1)/2}) < 2e7/2,

where nflogy(n) —logy e —logy p — o(1)] < Ellogy(|Acyc(Gp p)l)]. In particular on the
average there are p~™ [[;_,[1 — (1 — p)*] permutations (schedules) that are mapped by
Ay into an acyclic orientation.

Note that the above theorem, however, does not provide information on the dis-
tribution of sizes of neutral networks.

6. Dynamics on Landscapes.

6.1. Landscape Structure and Simulated Annealing. Simulated annealing [129,
98, 171] is a very general optimization method based on stochastically simulating the
slow cooling of a physical system. The basic idea is that there is a “temperature”
T, various ways to change the state of the system, and a probability of accepting a
change that depends on the difference in the fitness function. The transition matrix
is therefore of the form

1 it fly) <
>

o (),
(6.1) Pyo = Tys {exp (= (fly) = f@)/T) i fy) '

f
f(x)
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The temperature is slowly decreased at each step. The sequence {7} is called the
cooling schedule.

When the temperature is zero, changes are accepted only if f decreases, an algo-
rithm also known as hill-climbing, adaptive walk [85], or, more generally, the greedy
algorithm or steepest descent. In this case the system soon reaches a state in which
none of the proposed changes can decrease the cost function, but this is usually a
poor optimum. Little is known about the relationships of adaptive and gradient
walks and landscape structure apart from extensive numerical studies, mostly on Nk
model landscapes [68, 125, 244] and uncorrelated random landscapes [147, 146, 175].
Similar numerical studies have been performed for RNA folding landscapes [73] and
in a model of early vascular land plants [166].

Landscape characteristics such as depth and difficulty determine the asymptotic
behavior of simulated annealing.

THEOREM 6.1 (see [98]). Simulated annealing converges almost surely to a global
manimum if and only if the cooling schedule Ty, satisfies Y, exp(—D/T}) = oco.

A general theory of “simulated annealing algorithms and Markov chains with rare
transitions” that emphasizes the importance of depth and difficulty for convergence
results and error bounds is reviewed in [31].

6.2. Quasi-Species Dynamics. A particular class of dynamics that has been
studied in various landscapes is a subclass of genetic algorithms in which only mutation
but no crossover is considered. Given some landscape f : X — R some configuration
x is replicated with rate f(x). The replication process is error-prone and produces
the mutant configuration y with probability (). We can visualize this process as
follows:

(6.2) x 4! - Qow Lyt y

The first class of landscapes in which mutation-based dynamics were investigated
were single-peak landscapes. In a single-peak landscape one particular configuration
has the maximum fitness while all other configurations have inferior fitness values.
Eigen, Schuster, and collaborators [50, 52, 51, 224] completely analyzed the error-
prone replication of haploid organisms (or, equivalently, biopolymer sequences) on a
single-peak landscape. They discovered the genotypic error-threshold phenomenon,
i.e., the existence of some critical error rate at which the population becomes unstable
and drifts essentially randomly through sequence space.

More complicated landscapes were considered, beginning with the double-peak
model [202] exhibiting a trade-off between width and height of the peaks that de-
pends on the mutation rate. The quasi-species dynamics of the symmetric geometric
landscape was solved in closed form in [250]. Error-threshold phenomena on spin-
glass-type landscapes were studied, for instance, in [23, 227]. The effects of population
sizes were discussed in [3, 29, 148, 169]. Inspired by a series of computer simulations
based on RNA folding landscapes [70, 71, 73, 118], researchers have recently shifted
their focus to so-called single shape landscapes. These arise from neutral networks
by assigning a high fitness value to all sequences belonging to a particular neutral
network and a low fitness to all other configurations [186].

It could be shown that RNA mutation dynamics exhibits for single-shape land-
scapes phenotypic error-thresholds [118, 186]. The phenotypic error-threshold is a
natural generalization of Eigen’s genotypic error-threshold, which can be considered
as a phenotypic error-threshold in a landscape where the corresponding master se-
quence has no neutral neighbors. Accordingly, the error-threshold phenomenon does
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not seem to be an artifact of the particular choice of single-peak landscapes, al-
though many types of fitness function do not exhibit the error-threshold phenomenon
[236, 248].

In the following we use a single-shape landscape of an SDS of the form

(6.3) fao  Acye(Y) = {1,0}, f(a)= {U T 1 for leze ao,

as an example. We shall see that the landscape
Ay :U(Y) — Acye(Y) — {1,0}

exhibits an error-threshold phenomenon for mutation-based replication of update
schedules.

To this end we introduce a replication-deletion process over permutations with
acyclic orientations as phenotypes. We refer to a permutation 7 as a master or a
nonmaster, respectively, depending on whether or not 7 is an element of A;l(ao). A
population V' = {v;| i € Ny} is a finite family of vertices. Each element of V' has a
fitness of 1 if it corresponds to a nonmaster acyclic orientation or o otherwise. The
replication-deletion process consists of two coupled random events: an element of V'
is selected with some fitness weighted probability and is then subject to replication,
whereas another randomly chosen one is deleted. This process is the well-known
Moran model [159]. In detail, the replication-deletion process works as follows [88]:
suppose there are m € Ny elements having the master phenotype and let & = (N +
(c—1)m)/N. We select an ordered pair (v,,vq) from V: The first element v, then has
a master phenotype with probability p, = om/(N@) and has a nonmaster phenotype
otherwise. The second element vg is chosen with uniform probability 1/(N — 1)
from V' \ {v,}. The pair (v,,v4) is mapped into the pair (v,,v*), where v, remains
(unchanged) in the population and v, is replaced by v*. In order to describe the
mapping (v, vq) — (v, v*) we first introduce the maps

(64) €jZSn—>Sn; ej((’t'l,...Jn)):(il,...,ijJrhij,...,in)

for all j = 1,...,n. The maps e; are the analogue of point mutations in the RNA
case. The mapping (v,,vq) — (vr,v*) is now obtained as follows: We select each
ej, j =1,...,n — 1, independently with probability ¢ and derive the multiset I =
(J1,---,Js), where j, < jp for a < b and j, € {1,...,n — 1}. Then we set

(6.5) vt = Hej (vp).

jeI

The above mappings are considered as independent events, and the time interval At
which elapses between two such actions is assumed to be exponentially distributed
according to P(At > 7) = exp(—7TN7).

Let us now turn to the time evolution of a population of permutations. We
introduce the following metric on acyclic orientations:

d(, ):Acyc(Y) x Acyc(Y) = N,
d(a,a’) = |{y € E[Y] | y has a different orientation in a and a’}|.
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Fig. 6.1 The error-threshold phenomenon for the compositum faq © /\Gso,p for probabilities p = 0.25
(left) and p = 1.0 (right). We plot the fraction of a population of size N = 1000 in
the distance classes D = 0 (full line), D = 1 (dotted), D = 2 (short-dashed), D = 3
(long-dashed), D = 4 (dash-dotted), etc., as a function of the mutation probability .

Each element of v € V has distance d(v,aq) from the “target” ag. In the following
we focus on the frequency distribution of these distances. Specifically, we generate a
random graph Y € G, , and choose a random acyclic orientation ag € Acyc(Y’) to be
the master phenotype and set ¢ = 10. The initial population consists of N = 1000
permutations corresponding to the master acyclic orientation; see Figure 6.1 for two
examples.

The critical value of the mutation probability ¢ can be obtained analytically [135]:

(6.6) " =1/p(1 = "R/1/0).

For error rates below the threshold we have a nonuniform distribution of the popula-
tion, a quasi species of schedules, and above the threshold the population is uniformly
distributed. In particular, for Y = K,,, i.e., p = 1, the mapping Ay is bijective and,
consequently, each phenotype is represented by exactly one genotype. Accordingly,
we obtain the classical single-peak landscape of [51]. By modulating the edge-picking
probability p one obtains a variety of genotype-phenotype mappings. The smaller p
becomes, the more selective is the neutrality that is exhibited which allows to tolerate
more and more replication errors.

Neutrality has a number of important impacts on the dynamical behavior of
population replicating according to (6.2). The diffusive motion of the population’s
“center of gravity” is described in [46]. The diffusion constant is related to population
size N per digit mutation rate ¢ and the fraction p of neutral neighbors [118], and is

__ 6f(ao)p
(6.7) D=~ 3+4N@np
in the case of a 4-letter alphabet. A constant “rate of innovation” was reported
in [117] for the landscapes in which all neutral networks come close together, as in
the case of RNA. An analytical study of very simple model landscapes shows that
crossing entropy barriers can be faster by orders of magnitude than the crossing of
fitness barrier [231, 249].
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6.3. Genetic Algorithms and Genetic Programming. Genetic algorithms, evo-
lutionary strategies, and genetic programming [20, 69, 111, 124, 136, 178] can be
viewed as dynamical systems defined on a fitness landscape, and the interplay of
landscape structure and performance of genetic algorithms is an area of active re-
search. Most of the literature on this topic, however, deals with computer simulations
and empirical connections between measures such as fitness distance correlation [120]
and algorithm performance. We deliberately exclude this topic here and refer the
reader to recent books, including [11, 91, 156, 205].

Much of the mathematical analysis of genetic algorithms is concerned with the
convergence of the population, e.g., [167, 194]. Schemata, i.e., hyperplanes in Q7,
appear to play an important role here [61, 89, 90, 92, 142, 172, 234, 235].

The fitness function f : X — R can be extended in a natural way to arbitrary
subsets of X by setting

(6.8) f(A) = ﬁ S f@),

z€A

A schema is defined in terms of its fixed bits h as
(6.9) H=H[h={zxe XViec H|z; =h;}.

Note that we regard H C {1,...,n} as the index set of fixed positions. The value
f(HIh]) is called the schema-fitness. For a discussion of the schema theorem and the
building block hypothesis we refer to the literature [2, 20, 77, 110, 111, 223]. A variety
of landscape classes can be defined in terms of schema-fitnesses. We restrict ourselves
to a simple example here just to give the flavor. In a deceptive landscape an optimal
schema of some size is “contradicted” by one of its subschemata. Intuitively, this is
just the converse of GA-easy [141].

DEFINITION 6.2 (see [247]). A landscape f is deceptive if there are vertices
x,y € QF and index sets H C K C {1,...,n} such that

(i) Kla] £ K[y,

(ii) f(Hlz]) > f(H][z]) for all z with H[x] # H|[z], and

(iii) f(Ky]) > f(K]z]) for all z with K[y] # K|[z].

A discussion of various notions of deceptive and GA-easy functions and their
mutual relationships can be found in [162, 214].

7. Trends in Landscape Theory. In the following we will try to discuss some
developments in landscape theory, currently under investigation, which we think have
some relevance for a more complete picture of this subject. As this section is intended
to be an outlook on different directions of landscape theory, our presentation is not
entirely self-contained. Explicitly, section 7.3 does require some background on basic
cohomology theory [155].

7.1. Configuration Space Topologies. Combinatorial (“discrete”) landscapes
are treated quite differently from their manifold (“continuous”) counterparts. The
reason is that functions on R™, or more generally Riemannian manifolds, can be ana-
lyzed in terms of differential operators such as gradients, while finite sets are usually
discussed in terms of graph-theoretical properties. It seems desirable, therefore, to
find a basic framework that allows us to deal with landscapes on arbitrary configura-
tion spaces. A suitably general language is provided by the theory of pretopological
spaces.

A pretopological space consists of an arbitrary set X and a collection N(z) of
neighborhoods for every point « € X, such that
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(P1) N € N(z) implies z € N;

(P2) N € N(z) and N C N’ implies N' € N (z);

(P2) N,N’ € N(z) implies N N N" € N(x).

Pretopologies are more general than the much more familiar topological spaces. In
fact, (X,N) is a topological space if and only if

(T) for each N € N'(z) there is an N’ € N (z) such that N € N (y) for all y € N'.

Directed graphs are exactly the finite pretopological spaces. Their neighbor-
hood systems consist of all sets N’ containing x and all vertices adjacent to =z,
ie, N(z)U{z} C N’. Notions such as minima, maxima, or continuity of a func-
tion, connectedness, convergence, limits, etc., can be defined on pretopological spaces
[32, 63, 126, 127]. Their usefulness in the context of genotype-phenotype maps and
fitness landscapes is discussed in [208]. A further generalization to generalized closure
spaces [42, 87, 99] is necessary when recombination is considered. This approach is
explored in [207].

The virtue of the topological approach is that it allows a unified description of
combinatorial landscapes and potential surfaces on manifolds alike. For example, basic
notions such as local minima, saddle points, and so on can be defined in the same
way. For example, x € X is a local minimum if there is a neighborhood N € N (z) of
x such that f(x) < f(y) for all y € N. Similarly, one can use paths to define saddle
points analogous to (4.8).

Discrete Morse theory as studied in [74, 75, 76] has potentially some relevance to
the landscape theory, in particular in the context of approximating landscapes. So
far, however, this connection has not been explored systematically.

7.2. Modularity. The discussion of landscape and genotype-phenotype maps so
far has made little use of the internal structure of the underlying configurations. In
some cases, however, an optimization problem can be simplified by the observation
that it suffices to optimize partial configurations separately. A trivial example is
the additive fitness landscape f(z) = ), a;x; on the binary hypercube, where the
global optimum can be found by maximizing a;z; for each 7. In biology one observes
that phenotypes are usually composed of “modules” that can evolve approximately
independently. The notion of modularity also plays an important role in evolutionary
programming. For a very recent overview we refer to the book [28]. Given the practical
importance of this topic it is perhaps surprising that there is no generally applicable
definition of modularity.

A first attempt by Frenken, Marengo, and Valente [79] is restricted to sequence
spaces X = Q7 at present. Given a schema H = H[h] with fixed positions H and
fixed bits h C {1,...,n} and a sequence x, the projection of x onto H is the sequence
with positions

(h if ieH,
(7.1) (“’”AH)i_{xi it idH.

A schema H is dominant for a fitness function f : X — R if f(z AH) > f(z) for
all z € X. A cover of f is a collection $ of schemata such that (i) each schema
H = H[h] € $ is dominant and (ii) for each i € {1,...,n} there is H = H[h] € H with
i € H. If a cover is known, the global optimum can easily be obtained by a series of
projections. A module can now be defined as a set of positions M C {1,...,n} such
that there is a cover §) for f with the property that either H C M or HN M = () for
all dominating schemata H[h] € §.
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A more general approach to this topic naturally starts by extending the set X
of configurations by their “components” (subsequences, subtours, etc.) to a partially
ordered set (X, <) such that y < z means “y is a part of x.” This lattice has config-
urations z € X as its maximal elements. Landscape decompositions of the form

(7.2) fla)=> ()

y=z

are then of immediate interest. In the case of sequence spaces a component y may be
identified with a schema, i.e., a set of fixed positions and their fixed bit values. The
fitness function f is extended from X to X by means of (6.8). The function ¢ : X - R
is then given by the Mobius inversion formula

(7.3) d(@) = e, y) (),

y3w

where the Mébius function is obtained from the recursion [193]

(7.4) nay)=— 3 wle,z)  with p(e,a) = 1.

r=2z=xz

In this particular case one can interpret the values of ¢ (y) as the “residual schema
fitnesses.”

Since f is originally defined on X only, it can be extended to X also in other
ways. For instance, one might require that the functions ¢ are nonzero only on small
components.

7.3. An Algebraic Context for Neutral Landscapes. From an algebraic point
of view it is natural to ask a question such as the following: Given a graph Y, under
which conditions is there a specific class of landscapes f on'Y, and if so, how many
landscapes of this class can be constructed? Typically one would be interested in Y-
local properties such as having a fixed number £ of neutral Y-neighbors; see Figure 7.1
for an example. Surprisingly, it appears that no such theory has been developed for
landscapes yet. Since we will frequently make explicit references to the underlying
graph in the following, we shall write v[Y] and e[Y] for its vertex and edge-sets,
respectively.

For some graph Y let B;(j) denote the set of j neighbors in Y. Call a landscape
k-neutral over Y if for any j € v[Y] we have that [{ i € Bi(j) | f(i) = f(§) } =k
holds. We are interested in the collection of all k-neutral landscapes over Y. The key
idea is to consider the class of all induced subgraphs of Y and relate the k-neutral
landscapes over these to the k-neutral landscapes over Y. More precisely, we expand
k-neutral landscapes over Y-subgraphs to k-neutral landscapes over Y. Clearly, this
idea is motivated from analytic continuations of functions.

We begin our analysis by introducing what we consider to be the “local pieces”
of Y: To this end we consider the category C(Y), whose objects are all Y-induced
subgraphs and whose morphisms are the inclusion maps. In other words, we have the
commutative diagram

U - U’
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]

Fig. 7.1 A 2-neutral landscape f : Q% — Fo. Here all black vertices and all white vertices map
into 0 and 1, respectively. Note that each of the two fitness classes forms two connected
subgraphs.

Let X — Y be an object in C(Y). Then a covering of X is a multiset of C(Y)-
morphisms (U; — X);e; with the property Ure[U;] = e[X]. The class of all such
coverings of all such objects is called the I-topology® on C(Y). Next we consider
the mapping P, which assigns to each induced Y-subgraph the free Abelian group
generated by its k-neutral maps:

(7.5) P.(U)=Z[{f:Y > K |VjeU, fis k-neutral in j }].

We will denote elements of P(U) by fy. For any U, U’ € C(Y) let resy (fu+) = funur €
P(UNU’) be the mapping fys — fu+, considered as an element of P(U N U’), which
is naturally induced by the inclusion U NU’" — U’. Accordingly, any C(Y)-morphism
induces the commutative diagram

U P (U)
{ reSUI
U’ P(U")

and Py is a contravariant functor from C(Y') into the Abelian groups Ab. Next we
introduce the derivation map®

@ ]I BOt) — I RO,
Ny _1Uip in<tnt1 Aot

where d(*) is defined as follows: d*)(fn: v, ) = (Brstiy, ) and

Uiy, sth <th41

s+1
Bryie, = D _(=Dresu,, fo, v, -

g=1

5Thus named since it is induced by inclusion maps.

6This is exactly the derivation map for the standard Cech cohomology. Note, however, that
depending on the nature of the base category (which could contain morphisms that are not inclusion
maps) the notion of res in what follows can become ambiguous, as these maps are no longer restriction
maps.
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The key result relating local and global information on k-neutral landscapes can be
encoded in the exactness of the following short sequence of Abelian groups.

LEMMA 7.1 (see [181]). Let Y be a connected graph and (U; — Y)er be a
covering of Y. Then we have the short exact sequence

(7.6) Pu(Y) —" T] Pe(ui) —*7 T] P nUy).
il i<j
Equivalently, the contravariant functor Py : C(Y) — Ab is a sheaf.

Basically, Lemma 7.1 allows us to arbitrarily patch together consistent, local k-
neutral pieces in order to obtain a k-neutral landscape over Y. One natural algebraic
invariant of the sheaf P is its cohomology, and since P encodes information on a col-
lection of Y-local k-neutral landscapes its cohomology groups will contain information
on the neutral landscapes over Y itself. The following result provides a purely alge-
braic interpretation of the k-neutral landscapes over Y as a particular cohomology
group of the sheaf Pj.

THEOREM 7.2 (see [181]). Let Y be a graph. Then we have

(7.7) Z[Neuty,(Y)] = H°(Y, P,),
where HO(Y, Py) is the Oth derived functor cohomology group of the sheaf Py.

7.4. Landscape Morphisms. Landscape theory so far is not a relative theory
in the sense that we would understand how structural changes in the move set (or,
equivalently, base graph over the configurations) affect its properties. Relative theo-
ries, however, are standard in mathematics. For instance, in algebraic geometry one
has the concept of base changes of schemes over sites or considers the mappings of
(co)homology groups of topological spaces. In the following we will discuss briefly the
particular case of morphisms between SDSs as introduced in [184]. Of course, we will
try to design SDS-morphisms such that they allow for some “information” transfer
from one SDS (viewed as a dynamical system) to another.

DEFINITION 7.3. Let [§y,n| and [§z, 0] be two SDSs. A morphism @ : [§Fy, 7] —
[§z,0] is a tuple (p,), where ¢ : Y — Z and ¢ : G[§z,0] — G[Fy, | are graph
and digraph morphisms, respectively.

Here G[§y, o] and G[Fy, 7] denote the phase spaces of the corresponding SDSs.

Next we show that there are in fact nontrivial SDS-morphisms and study one
particular class which is naturally induced by locally bijective and locally surjective
graph morphisms. Here, we call a graph morphism ¢ : Y — Z locally surjective and
locally bijective, respectively, if and only if

(7.8) resp, v (i) () : Bry (i) — Bi1,z(p(i))
is surjective and bijective for all i € v[Y].
Let ¢ : Y — Z be a graph morphism. Then we call the set
Acyc?(Y) = {0 € Acye(Y) |V z € e[Z); Yy, € 7' (2); Oy (y) = Oy (¥)}

the set of p-symmetric acyclic orientations. It is shown in [184] that there exists a
one-to-one correspondence 1, : Acyc(Z) — Acyc¥(Y") for locally surjective ¢. From
this we obtain a mapping 7, : S;, — S, such that

N

S,

Acyc(Y)
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Fig. 7.2 Illustration of Theorem 7.4 showing a phase space embedding induced by the covering map
Q% — Ky4. The figure on the left shows a limit cycle of an SDS composed by Min-functions
(i.e., local, Boolean maps returning the minority value in the corresponding neighborhood
and 0 in case of an equal number of 0’s and 1’s) over K4 with the identity as update
schedule. The figure on the right shows the corresponding SDS over Q3 with the schedule
N, (id), as defined in Theorem T.4. It follows that the digraph on the left can be embedded
into the digraph on the right.

is commutative.” The following theorem establishes a relation between the phase
spaces of SDS that have SDS-morphisms induced by locally bijective and surjective
graph morphisms, respectively. Let [Noryz, 7] denote an SDS over the graph Z, with
a Boolean Nor function on each vertex.

THEOREM 7.4 (see [184]). LetY, Z be connected loop-free graphs, let p : Y — Z
be a graph morphism, and define

0. T — 3L

Then the following assertions hold:
(a) If ¢ 1 Y —> Z is locally bijective and [§z,m] and [§y,n,(m)] are induced by
the set of local functions f : FX — Fy, then one has the following morphism

¥l by @*(m)k = Tp(k)-

of SDSs:
(79) ¢ = (907410*) : [SY?TIL/J(TF)] — [SZ;W]'
(b) Let v : Y — Z be locally surjective. Then we have the following morphism
of SDSs:
(7.10) ® = (p, ¢«) : [Nory,n,(m)] — [Nory,n].

In particular, Theorem 7.4 shows how to translate any graph automorphism of Y’
into a phase space isomorphism of the corresponding SDS, independent of the Y-local
functions used; see Figure 7.2. In other words, the symmetries of the base graph
induce dynamically equivalent schedules, which proves in particular that SDSs can in
fact be formulated over unlabeled graphs.

Theorem 7.4 describes the relationship between two SDSs over graphs that are
related by a locally surjective graph morphism. A similar morphism concept would be
a step toward a relative landscape theory. For example, one might try to identify the
impact of certain classes of graph morphisms on the corresponding amplitude spectra.

"Here s is the map induced by 1, by identifying Acyc¥(Y')-elements as acyclic orientations.
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